Skip to content

Asyncio

Resources

Intro

Parallelism consists of performing multiple operations at the same time. Multiprocessing is a means to effect parallelism, and it entails spreading tasks over a computer’s central processing units (CPUs, or cores). Multiprocessing is well-suited for CPU-bound tasks: tightly bound for loops and mathematical computations usually fall into this category.

Concurrency is a slightly broader term than parallelism. It suggests that multiple tasks have the ability to run in an overlapping manner. (There’s a saying that concurrency does not imply parallelism.)

Threading is a concurrent execution model whereby multiple  threads take turns executing tasks. One process can contain multiple threads. Python has a complicated relationship with threading thanks to its  GIL, but that’s beyond the scope of this article.

What’s important to know about threading is that it’s better for IO-bound tasks. While a CPU-bound task is characterized by the computer’s cores continually working hard from start to finish, an IO-bound job is dominated by a lot of waiting on input/output to complete.

Concurrency encompasses both multiprocessing (ideal for CPU-bound tasks) and threading (suited for IO-bound tasks). Multiprocessing is a form of parallelism, with parallelism being a specific type (subset) of concurrency.

The white terms represent concepts, and the green terms represent ways in which they are implemented or effected:

# asynchronous
import asyncio

async def count():
    print("One")
    await asyncio.sleep(1)
    print("Two")

async def main():
    await asyncio.gather(count(), count(), count())

if __name__ == "__main__":
    import time
    s = time.perf_counter()
    asyncio.run(main())
    elapsed = time.perf_counter() - s
    print(f"{__file__} executed in {elapsed:0.2f} seconds.")

"""
One
One
One
Two
Two
Two
countasync.py executed in 1.01 seconds.
"""
# synchronous
import time

def count():
    print("One")
    time.sleep(1)
    print("Two")

def main():
    for _ in range(3):
        count()

if __name__ == "__main__":
    s = time.perf_counter()
    main()
    elapsed = time.perf_counter() - s
    print(f"{__file__} executed in {elapsed:0.2f} seconds.")

"""
One
Two
One
Two
One
Two
countsync.py executed in 3.01 seconds.
"""